Adjusting Organic Matter in Soil Materials

If one knows the present organic matter percentage of a soil, the organic matter percentage of an organic amendment (ex. peat moss), and the percentage of organic matter desired in a mix of the two, the volume ratio of the two that must be combined can be determined as follows:

If \(A = \) current soil organic matter \%

And \(B = \) organic matter \% of organic amendment

And \(C = \) target soil organic matter \% after amendment has been added

Then \(X = \frac{(B-C)}{(B-A)} \)

where \(X = \) fraction by weight of dry soil in the final mix

And \(1-X = \) the fraction by weight of dry organic amendment needed in mix

To convert weights (\(X \) and \(1-X \)) to volumes (since that is how one will work with the material), a conversion must be made using the dry bulk densities of the material being mixed.

\[
S = \frac{X}{P_s} \quad \text{and} \quad T = \frac{(1-X)}{P_o}
\]

So, \(S = \) Volume parts of soil material
\(T = \) Volume parts of organic amendments

By dividing \(S/T \) you obtain volume parts of soil per 1 volume part organic amendment.

\(^\# \) Obtained from soil test
\(^\#\# \) Can be assumed to be 100\% for peat moss; composts are typically around 25 to 35\%
\(^* \) The dry bulk density of soil can usually be assumed to be about 1.0 to 1.2 grams/cc.
\(^** \) The dry bulk density of peat moss can be assumed to be about 0.15 grams/cc. The dry bulk densities of composts are typically in the range of 0.5 to 0.7 grams/cc.